Elements from the Periodic Table

Nitrogen:
7

Hydrogen:

Calculation of Mass of One Mole

To determine the mass of one mole of a substance, refer to its molar mass, which is typically expressed in grams per mole $(\mathrm{g} / \mathrm{mol})$.

1. N_{2}

Given the atomic mass of Nitrogen (N) as $14.01 \mathrm{~g} / \mathrm{mol}$,

$$
\text { Molar mass of } \begin{aligned}
N_{2} & =2 \times \text { atomic mass of } N \\
& =2 \times 14.01 \mathrm{~g} / \mathrm{mol} \\
& =28.02 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Thus, 1 mole of N_{2} weighs 28.02 grams.
2. H_{2}

Given the atomic mass of Hydrogen (H) as $1.008 \mathrm{~g} / \mathrm{mol}$,

$$
\text { Molar mass of } \begin{aligned}
H_{2} & =2 \times \text { atomic mass of } H \\
& =2 \times 1.008 \mathrm{~g} / \mathrm{mol} \\
& =2.016 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Thus, 1 mole of H_{2} weighs 2.016 grams.

3. NH_{3}

Molar mass of $\mathrm{NH}_{3}=$ atomic mass of $\mathrm{N}+3 \times$ atomic mass of H

$$
=14.01 \mathrm{~g} / \mathrm{mol}+3 \times 1.008 \mathrm{~g} / \mathrm{mol}
$$

$$
=14.01 \mathrm{~g} / \mathrm{mol}+3.024 \mathrm{~g} / \mathrm{mol}
$$

$$
=17.034 \mathrm{~g} / \mathrm{mol}
$$

Thus, 1 mole of NH_{3} weighs 17.034 grams.

